Схема экструзии

Описание и технологии переработки – Экструзия

Экструзия – это способ переработки полимерных материалов непрерывным продавливанием их расплава через формующую головку, геометрическая форма выходного канала которой определяет профиль получаемого изделия или полуфабриката.

Около половины производимых термопластов перерабатываются в изделия этим способом. Экструзией получают пленки, листы, трубы, шланги, капилляры, прутки, сайдинг, различные по сложности профили, наносят полимерную изоляцию на провода, производят многослойные разнообразные по конструкции и сочетанию применяемых пластмасс гибридные погонажные изделия. Переработка вторичных полимеров и гранулирование также выполняются с применением экструзионного оборудования.

В 2006 году около 30% производимых в России термопластов были переработаны методом экструзии.

Основным оборудованием экструзионного процесса является червячный экструдер, оснащенный формующей головкой. В экструдере полимерный материал расплавляется, пластицируется и затем нагнетается в головку. Чаще всего используются различные модификации одно- и двухчервячных экструдеров.

Иногда при переработки пластмасс применяются бесшнековые, или дисковые, экструдеры, в которых рабочим органом, продавливающим расплав в головку, является диск особой формы. Дисковые экструдеры применяются, когда необходимо получить улучшенное смешение компонентов смеси. Из-за невозможности развивать высокое давление формования такие экструдеры применяются для получения изделий с относительно невысокими механическими характеристиками и небольшой точностью геометрических размеров.

Комбинированные экструдеры имеют в качестве рабочего органа устройство, сочетающее шнековую и дисковую части, и называются червячно-дисковыми. Применяются для обеспечения хорошего смесительного эффекта, особенно при переработке композитов. На них перерабатываются расплавы пластмасс, имеющие низкую вязкость и достаточно высокую эластичность.

Процессы, происходящие при экструзии.

Технологический процесс экструзии складывается из последовательного перемещения материала вращающимся шнеком в его зонах (см. рис. 1): питания (I), пластикации (II), дозирования расплава (III), а затем продвижения расплава в каналах формующей головки.

Деление шнека на зоны I-III осуществляется по технологическому признаку и указывает на то, какую операцию в основном выполняет данный участок шнека. Разделение шнека на зоны условно, поскольку в зависимости от природы перерабатываемого полимера, температурно-скоростного режима процесса и других факторов начало и окончание определенных операций могут смещаться вдоль шнека, захватывая различные зоны или переходя из одного участка в другой.
Цилиндр также имеет определенные длины зон обогрева. Длина этих зон определяется расположением нагревателей на его поверхности и их температурой. Границы зон шнека I-III и зон обогрева цилиндра могут не совпадать.

Рассмотрим поведение материала последовательно на каждом этапе экструзии.

Загрузка сырья. Исходное сырье для экструзии, подаваемое в бункер, может быть в виде порошка, гранул, лент. Равномерное дозирование материала из бункера обеспечивает хорошее качество экструдата.

Переработка полимера в виде гранул – наилучший вариант питания экструдера. Это объясняется тем, что гранулы полимера меньше склонны к образованию «сводов» в бункере, чем порошок, следовательно, исключаются пульсации потока на выходе их экструдера.

Загрузка межвиткового пространства под воронкой бункера происходит на отрезке длины шнека, равном (1 – 1,5)D. При образовании «сводов» на стенках бункера питание шнека материалом прекращается. Для устранения этого необходимо в бункер помещать ворошители.
Сыпучесть материала зависит в большой степени от влажности: чем больше влажность, тем меньше сыпучесть. Поэтому материалы должны быть вначале подсушены.

Для увеличения производительности машины гранулы можно предварительно подогреть.

Применяя приспособления для принудительной подачи материала из бункера на шнек, также удается существенно повысить производительность машины (в 3-4 раза). При уплотнении материала в межвитковом пространстве шнека вытесненный воздух выходит обратно через бункер. Если удаление воздуха будет неполным, то он останется в расплаве и после формования образует в изделии полости, что является браком изделий.

Изменение уровня заполнения бункера материалом по высоте также влияет на полноту заполнения шнека. Поэтому бункер снабжен специальными автоматическими уровнемерами, по команде которых происходит загрузка бункера материалом до нужного уровня. Загрузка бункера экструдера осуществляется при помощи пневмотранспорта.

При длительной работе экструдера возможен перегрев цилиндра под воронкой бункера и самого бункера. В этом случае гранулы начнут слипаться и прекратится их подача на шнек. Для предотвращения перегрева этой части цилиндра в нем делаются полости для циркуляции охлаждающей воды (см. рис. 1, поз. 4).

Зона питания (I). Поступающие из бункера гранулы заполняют межвитковое пространство шнека зоны I и уплотняются. Уплотнение и сжатие гранул в зоне I происходит, как правило, за счет уменьшения глубины нарезки h шнека. Продвижение гранул осуществляется вследствие разности значений силы трения полимера о внутреннюю поверхность корпуса цилиндра и о поверхность шнека. Поскольку поверхность контакта полимера с поверхностью шнека больше, чем с поверхностью цилиндра, необходимо уменьшить коэффициент трения полимера о шнек, так как в противном случае материал перестанет двигаться вдоль оси шнека, а начнет вращаться вместе с ним. Это достигается повышением температуры стенки цилиндра (нагревом) и понижением температуры шнека (шнек охлаждается изнутри водой).

Нагрев полимера в зоне I происходит за счет диссипативного тепла, выделяющегося при трении материала и за счет дополнительного тепла от нагревателей, расположенных по периметру цилиндра.
Иногда количество диссипативного тепла может быть достаточным для плавления полимера, и тогда нагреватели отключают. На практике такое происходит редко.

При оптимальной температуре процесса полимер спрессован, уплотнен и образует в межвитковом пространстве твердую пробку (см. рис. 2). Лучше всего, если такая скользящая пробка образуется и сохраняется на границе зон I и II. Свойства пробки во многом определяют производительность машины, стабильность транспортировки полимера, величину максимального давления и т. д.

Зона пластикации и плавления (II). В начале зоны II происходит подплавление полимера, примыкающего к поверхности цилиндра. Расплав постепенно накапливается и воздействует на убывающую по ширине пробку. Поскольку глубина нарезки шнека уменьшается по мере продвижения материала от зоны I к зоне III, то возникающее давление заставляет пробку плотно прижиматься к горячей стенке цилиндра, происходит плавление полимера.

В зоне пластикации пробка плавится также и под действием тепла, выделяющегося вследствие внутреннего, вязкого трения в материале в тонком слое расплава (поз. 3 на рис. 2), где происходят интенсивные сдвиговые деформации. Последнее обстоятельство приводит к выраженному смесительному эффекту. Расплав интенсивно гомогенизируется, а составляющие композиционного материала перемешиваются.

Конец зоны II характеризуется распадом пробки на отдельные фрагменты. Далее расплав полимера с остатками твердых частиц попадает в зону дозирования.

Основной подъем давления P расплава происходит на границе зон I и II. На этой границе образующаяся пробка из спрессованного материала как бы скользит по шнеку: в зоне I это твердый материал, в зоне II- плавящийся. Наличие этой пробки и создает основной вклад в повышение давления расплава. Также увеличение давления происходит за счет уменьшения глубины нарезки шнека. Запасенное на выходе из цилиндра давление расходуется на преодоление сопротивления сеток, течения расплава в каналах головки и формования изделия.

Зона дозирования (III). Продвижение гетерогенного материала (расплав, частички твердого полимера) продолжает сопровождаться выделением внутреннего тепла, которое является результатом интенсивных сдвиговых деформаций в полимере. Расплавленная масса продолжает гомогенизироваться, что проявляется в окончательном плавлении остатков твердого полимера, усреднении вязкости и температуры расплавленной части.

В межвитковом пространстве расплав имеет ряд потоков, основными из которых являются продольный и циркуляционный. Величина продольного (вдоль оси шнека) потока определяет производительность экструдера Q, а циркуляционного – качество гомогенности полимера или смешения компонентов.
В свою очередь продольный поток складывается из трех потоков расплава: прямого, обратного и потока утечек.
Прямой поток вызван движением шнека в направлении формующей головки. Обратный поток – это воображаемое течение, вызываемое высоким давлением со стороны головки; в реальности не существует. Поток утечки происходит при перетекании расплава между цилиндром и гребнем червяка.

Производительность Q экструдера с учетом распределения скоростей различных потоков составляет
Q = Q пр – Q обр – Q ут ,
где Q пр , Q обр , Q ут – производительности экструдера от прямого потока, противотока и утечек расплава соответственно.

Q= αn – β•(∆P)/(μ•L),
где n – частота вращения шнека; ∆P – давление на выходе из шнека (в конце зоны III); μ – эффективная вязкость расплава; L – длина шнека; α – константа скорости прямого потока, β – константа скорости обратного потока, которые зависят от геометрических параметров шнека.

Основные параметры процесса экструзии. К технологическим параметрам относятся температура переработки полимера, давление расплава, температура зон головки и температурные режимы охлаждения сформованного экструдата.

При слишком высокой вязкости расплава получать изделия методом экструзии трудно из-за большого сопротивления течению расплава, возникновения неустойчивого режима движения потока. Все это приводит к образованию дефектов изделий.
Повышение температуры переработки может привести к термодеструкции расплава, а увеличение давления, мощности привода при более низких температурах – к механодеструкции, т.е. для экструзии расплавов должны применяться полимеры с довольно узким интервалом колебания вязкости.

Основными технологическими характеристиками одношнекового экструдера являются L, D, L/D, скорость вращения шнека n, геометрический профиль шнека (см. рис.3) и степень сжатия (компрессии) – отношение объема одного витка червяка в зоне загрузки к объему одного витка в зоне дозирования.

Короткошнековые экструдеры имеют L/D= 12-18, длинношнековые L/D> 30. Наиболее распространены экструдеры с L/D = 20-25.

Показателем работы экструдера является его эффективность- отношение производительности к потребляемой мощности.

Материалы. Большинство термопластов и композиций на их основе могут перерабатываться экструзией. Для этого достаточно, чтобы время пребывания расплава в экструдере при данной температуре было меньше времени термостабильности полимера при той же температуре. Наиболее широко применяется экструзия крупнотоннажных полимеров следующих типов. ПЭ, ПП, ПС ПК ПА, ПВХ (пластифицированный и непластифицированный), ПЭТФ а также смеси с неорганическими и полимерными наполнителями и более сложные композиции на их основе.

Для экструзии применяются материалы и режимы переработки при которых ПТР меняется в пределах 0,3 – 12 г/10 мин, т.к. из маловязких расплавов невозможно получить сплошную экструзионную заготовку в виде пленки, трубы, профиля. Если же используются литьевые марки полимера, то из них можно получить экструзией лишь отдельные типы изделий, так как ПТР у них находится в пределах 0,8 – 20 г/10 мин.
Так, трубы, кабельные покрытия производят из расплава полимера с ПТР от 0,3 до 1 г/10 мин. Это связано с выбором полимера большой молекулярной массы. Последняя определяет эксплуатационные свойства изделий – повышенные физико-механические характеристики.
Пленки, листы изготавливают экструзией расплава с ПТР в пределах 1 – 4 г/10 мин.
Дискретные изделия, производимые экструзией расплава с последующим раздувом в форме, получают из расплава с ПТР = 1,5 – 7,0 г/10 мин.
Ламинирование с помощью экструзии происходит при ПТР расплава в пределах 7 – 12 г/10 мин.

Изделия. Все изделия, получаемые на основе термопластов методом экструзии, могут иметь в принципе неограниченную длину. Поперечник изделий ограничивается главным образом диаметром шнека экструдера. Чем больше D, тем шире, толще могут получаться изделия.

Что такое экструдер и экструзия

Экструзия исключает из производственного цикла трудоемкую механическую обработку. Это быстрый и недорогой способ получения пленок, труб, профиля и других изделий, выпускаемых погонажом из полимерного сырья. В статье расскажем, что такое экструдер, как происходит процесс экструзии полиэтилена, разберем тонкости экструзионной технологии.

Читайте также:  Использование черного глянцевого потолка в дизайне ванной

Что такое экструзия полимеров?

Процесс экструзии происходит при нагреве полимеров максимум до 250 0 С. Производство идет на скорости до 120 метров/минуту. Около 30 % всего объема полимеров перерабатывается по экструзионной технологии с помощью экструдеров. Попробуем разобраться в тонкостях этого процесса.

Экструзия полимеров — это технология получения формовочных изделий из термопластов и их композиций на шнековых прессах. Осуществляется путем продавливания (под давлением) однородного расплава через щель формовочной головки экструдера.

Щель имеет определенную форму, которая определяет геометрию изделия — сайдинг, пленка, оконный ПВХ профиль. В качестве сырья используются гранулы полиэтилена ПВД и ПНД, полипропилена, ПВХ, полистирола и других полимеров.

Экструзия включает в себя следующие этапы:

  1. получение однородного расплава в экструдере;
  2. формование;
  3. охлаждение продукции;
  4. натяжение и намотка (пленки), нарезка (профиль, труба).

Устройство и принцип работы экструдера, что это такое

Уже по тому, что слова «экструдер» и «экструзия» являются однокоренными, становится понятным, что экструдер — это основной рабочий орган экструзионной линии.

По длине экструдер для полимеров условно делится на три зоны: загрузки, сжатия расплава и дозирования.

  • Зона загрузки. Гранулы (порошок, вторичное сырье) подаются в бункер самотеком или под напором сжатого компрессором воздуха. Шнек, который приводится в движение работой привода, вращается, и уплотняя полимер до состояния пробки, продвигает его к горячим секциям экструдера.
  • Зона плавления. Здесь шаг между витками начинает уменьшаться. Как следствие один и тот же объем полимера пытается поместиться в уменьшившемся пространстве. Пробка прижимается к обогреваемым стенкам трубы экструдера, плавится, расплав перемешивается. Хотим уточнить, что плавление происходит, в основном, не за счет нагревателей (они лишь интенсифицируют процесс), а из-за огромных сдвиговых деформаций в уплотняющемся полимере.
  • Зона дозирования. На выходе из экструдера полимер продавливается через систему фильтрующих сеток и проходит через формующее отверстие, профиль которого зависит от формы выпускаемой продукции.

Важно! Экструдер может различаться по типу и количеству шнеков. Выпускаются: одношнековые, двухшнековые и многошнековые, дисковые и многодисковые экструдеры.

О конструкции одношнекового экструдера.

Внутри толстостенного корпуса (трубы) вращается шнек — металлический стержень с винтовой навивкой. Шнек перемещает гранулы по направлению к экструзионной головке. Корпус опоясывают секции хомутовых нагревателей, которые греют металл и плавят полимер, прижимаемый винтом к внутренней поверхности трубы. «Горячую» часть оборудования помещают в водоохлаждаемый кожух, и сверху утепляют термочехлом.

Экструзия пленки

Наиболее популярными формовочными изделиями, которые получают с применением экструзии, являются пленки. Их изготавливают из полистирола, полипропилена, полиамида, лавсана, поликарбоната, ПВХ, но самыми востребованными из них являются, конечно же, пленки из экструдированного полиэтилена высокого и низкого давления. Именно на их примере мы рассмотрим, какие этапы этот материал проходит на выходе из экструдера.

Существует два метода экструдирования пленок:

  1. Метод раздува рукава.
  2. Метод плоскощелевой экструзии.

Читайте также какие дефекты могут возникнуть при экструзии пленки и как их устранить.

Метод раздува рукава.

Полимер выдувается из экструдера для пленки через кольцевую щель в формующей головке. Визуально это выглядит, как из фильеры поднимается сплошной пленочный цилиндр, раздуваемый изнутри воздухом. Воздух подается под давлением через дорн — отверстие в центре головки.

Охлаждение при экструзии полиэтилена, в зависимости от ориентации рукава, может производиться по двум схемам:

    Если рукав направлен вертикально вверх или горизонтально, то пленка обдувается воздухом, поступающим через охлаждающие кольца по периметру рукава;

После остывания пленка складывается с помощью специальных «щек» в полотно и протягивается через отжимающие воздух валки. Готовый материал отправляется на намотку.

Чем быстрее охладить расплав полиэтилена на выходе из экструдера, тем выше будет прозрачность и блеск пленки. Почему так происходит? Дело в том, что при остывании в пленке образуется два вида молекулярных структур — кристаллическая и амфорная. Когда материал охлаждают медленно, то макромолекулы полимера успеют сформироваться в кристаллы, и экструдированная пленка будет мутной и неэластичной, но прочной. При быстром охлаждении кристаллы не успевают соединиться и пространство между ними заполняют амфорные связи, придающие пленке прозрачность, хорошую эластичность и гибкость.

Метод плоскощелевой экструзии.

Отверстие в фильере плоскощелевого экструдера протачивают в виде тончайшей щели. Пленка из формовочной головки выходит в виде непрерывного полотна определенной толщины и ширины.

Существует два варианта охлаждения пленки полученной плоскощелевым методом:

  1. Первый, это когда экструзионный полиэтилен сразу же после формования подается на охлаждающий барабан, температура поверхности которого поддерживается на уровне 30…50 0 С.
  2. Второй вариант — пленку пропускают через ванну с проточной водой. Такое шоковое охлаждение позволяет получать блестящий и прозрачный материал, но есть свои нюансы. Когда пленка заходит в воду, она вызывает рябь на ее поверхности, из-за которой на полиэтилене появляются пятна.

После охлаждения и сушки полиэтилен протягивается через натягивающие валы и идет на намотку.

Соэкструзия и коэкструзия.

Соэкструзия — это технология, использующаяся для получения многослойных пленок.

В качестве сырья может использоваться: полиэтилен низкой и высокой плотности, полипропилен, полиамидная пленка и др. полимеры. Гранулят этих пластических масс плавится в разных экструдерах, после чего соединяется и проходит через одну формовочную фильеру (головку). Для прочного склеивания нужно, чтобы молекулярная сетка полимеров была похожа по структуре. Но если нужно связать барьерный слой, например, EVOH и линейный полиэтилен, то потребуется специальные вяжущие сополимеры.

Соэкструзионные многослойные пленки используются для вакуумирования продуктов, как транспортная упаковка, с/х пленка (для мульчирования, пленка с эффектом антифог), упаковка фармацевтических препаратов.

По похожей технологии, которая получила название коэкструзия, изготавливают панели сайдинга и профиль ПВХ. Поливинилхлорид — основа профиля, занимает около 80% толщины панели, оставшиеся 20% — акрил. Как и в случае соэкструзии, используется работа двух коэкструдеров, где отдельно плавят ПВХ и акрил. Соединяются эти расплавы в щелевой филере, откуда выходят уже готовым спаянным изделием.

Коронарная обработка пленки после экструзии

Химическая инертность и малая поверхностная энергия пленки делают ее невосприимчивой к типографской или любой другой краске. Нанесение покрытия на поверхность полиэтилена станет возможным, если его поверхностная энергия будет хотя бы на 10 дин/см выше энергии наносимой краски. В ином случае краска будет просто собираться в капли. «Подзарядить» пленку можно коронированием. Каждая экструзивная линия оборудована активатором обработки коронным разрядом, который состоит из: генератора, трансформатора и электродов. При пропадании пленки в область электромагнитного поля растет ее поверхностная энергия и повреждается верхний слой макромолекул (микротравление).

Применение технологии экструзии

  • Химическая промышленность. Почти все термопласты и их композиции могут перерабатываться экструзией в готовые изделия (пленки, трубы, оболочки изоляции, сайдинг, листы).
  • Производство комбикорма. Измельченное сырье для производства комбикорма поступает в экструдер, где подвергается уплотнению, сжатию и температурной обработке при температуре до 200 0 С. Этот способ переработки повышает питательность и усвояемость корма, сохраняет в нем витамины и препятствует размножению микроорганизмов.
  • Брикетирование твердого биотоплива. Переработка биомассы (торфа, угольной пыли, шелухи подсолнечника, отходов сахарного производства, соломы сои, щепы) и прессование ее в гранулы или брикеты производится на экструдерах;
  • Пищевая промышленность. Макароны, кукурузные палочки и хлопья, жевательная резинка и чипсы, соевые продукты— все эти продукты изготавливают с помощью пищевой экструзии.

Развитие экструзионного производства сейчас идет сейчас по трем направлениям. Это: усовершенствование существующего оборудования, применение новых композиций полимеров, совершенствование автоматизированных систем управления. Последнее направление представляется наиболее актуальным — уже сейчас в России появились установки оборудованные АСУ на основе микропроцессора. Они позволяют автоматически контролировать не только работу экструдера, но и системы подготовки сырья, калибровки и обрезки готовых изделий.

Экструдер. Виды и устройство. Работа и применение. Особенности

Экструдер – машина для производства длинномерных изделий из пластичных или сыпучих веществ. Аппарат пропускает загруженные материалы сквозь тонкое отверстие под высоким давлением, иногда с предварительным подогревом, что приводит к уплотнению вещества. Подобные машины нашли широкое применение в различных сферах производства.

Где используется экструдер
Экструдеры нашли широкое применение в различных отраслях современной промышленности. Их применяют для производства:
  • Кормов для животных.
  • Шоколадных батончиков.
  • Макаронных изделий.
  • Провода для 3D принтеров.
  • Пластиковых труб.
  • Профиля из поливинилхлорида.
  • Полиэтиленовой пленки.
  • Топливных брикетов.

Оборудование, работающее по типу экструдера, встречается повсеместно. Без него не обошлось производство гранулированного корма для животных, а также макарон, длинномерных пустотелых изделий из пластика и т.д. Системы, используемые для определенных целей, имеют небольшие отличия в техническом плане, но работает по одинаковому принципу.

Разновидности экструдеров по принципу работы
По принципу работы экструдеры разделяют на 3 вида:
  1. Шнековые.
  2. Плунжерные.
  3. Плоскощелевые.

Шнековый экструдер является самым распространенным. Он работает по принципу мясорубки. Внутри устройства имеется вращающийся шнек со спиралью, который захватывает загружаемый материал и продавливает его сквозь тонкое отверстие. В результате масса уплотняется и приобретает твердость. От создаваемого давления поднимается температура сырья, что способствует увеличению эффективности сварки компонентов. Подобные виды являются самыми дешевыми по сравнению с другими. Кроме конструкции с одним шнеком также существуют и двухшнековые экструдеры. Они создают еще более эффективное сжатие, но и стоят дороже. Подобные устройства обычно используют для производства кормов, а также различных изделий пищевой промышленности.

Плунжерные экструдеры в отличие от шнековых проводят точное дозирование материала, перед тем как задать ему определенную форму. Подобные устройства применяют для переработки резины или пластика.

Плоскощелевые экструдеры предназначены для производства рулонных изделий, таких как стрейч-пленка, пленка для теплиц, пластиковые и пропиленовые листы. В них подогретый и тягучий материал выдавливается сквозь плоскую широкую щель и быстро охлаждается, в результате чего тот сохраняет свою форму. Подача материала осуществляется с помощью гидравлического пресса, шнека, или другим механизмом.

Кормовые экструдеры

Кормовые экструдеры обычно представлены оборудованием со шнековой конструкцией. Они предназначены для переработки зерновых культур, а также травянистых растений в комбикорм. Существует две разновидности подобных систем. Первая просто осуществляет экструзию, давая на выходе длинную трубку, а вторая создает готовые гранулы.

Обычные экструдеры

Обычная экструзия позволяет перерабатывать цельное зерно в длинную хрустящую трубку, которая на выходе поддается дроблению в хлопья. Такой корм является более приемлемым, чем сырье загружаемое для переработки. Дело в том, что в результате сдавливания осуществляется прогрев массы. Это способствует уничтожению подавляющего большинства микроорганизмов, которые способны вызывать пищевые расстройства. Кроме этого питательные вещества запекаются как в духовке, что улучшает их усваивание организмом животного.

Фактически, благодаря экструзии можно используя такой же объем корма добиться более высоких показателей роста животных. Подобное оборудование имеет и недостаток. Получаемую в результате трубку зачастую необходимо разламывать на хлопья вручную. Также существует сложность в отмеривании порции. В зависимости от того насколько крупные хлопья, фактическая масса продукта в определенном объеме может отличаться. В связи с этим при отмеривании порции для кормления принято ее взвешивать, а не использовать мерную тару.

Грануляторные экструдеры

Экструдер работающий по принципу гранулятора является менее эффективным в плане обеззараживания загруженной массы. На выходе получаются мелкие гранулы, которые обладают высокой твердостью. Они не столь хрупкие, как пищевые трубки обычного экструдера. С целью повышения качества продукции зачастую осуществляется обработка сразу двумя способами экструзии. Сначала формируются хлопья, которые эффективно прожариваются, после чего применяется грануляторный экструдер.

Читайте также:  В процессе монтажа в помещении должна поддерживаться необходимая температура

Подобное оборудование работает по принципу мясорубки. Сквозь пресс-форму выдавливаются прутики корма, которые обрезаются вращающимся ножом. Благодаря этому получаются полностью идентичные друг другу гранулы. При использовании гранулярного экструдера загружается не цельное зерно, а ранее перемолотые смеси. Зачастую в их состав входят зерновые культуры, витамины, микроэлементы, травяная мука, а также сухое мясо, если речь идет о корме для собак, кошек или других плотоядных животных.

Экструдеры для пищевой промышленности

Особой популярностью экструдеры пользуются в пищевой промышленности. Подобные устройства используются для формирования различных продуктов. Они работают не только с сухими веществами, но и влажными. К примеру, такие изделия как крабовые или рыбные палочки делаются именно с помощью такого оборудования. Загруженная масса уплотняется и выдавливается. Подобные устройства зачастую работают без нагрева, просто уплотняя холодную массу. Множество батончиков и конфет также делаются по данному принципу. Выдавленные заготовки в последствии обливаются горячим шоколадом, благодаря чему грубая формовка экструдером незаметна.

Один из самых старых экструдеров, которые используются в пищевой промышленности, являются формовочные машины для производства макаронных изделий. Они также работают по шнековому принципу. Их конструкция практически ничем не отличается от кормового экструдера. При этом существует одно важное отличие. В них загружается не сухая масса, а готовое тесто из твердых сортов пшеницы. Ранее подготовленное и хорошо раскатанное с помощью валиков до однородной субстанции тесто продавливается сквозь формовочную головку, в результате чего получаются макаронные изделия. Далее вращающийся нож обрезает их на одинаковом расстоянии, после чего на конвейерную ленту падают уже готовые макароны.

Фармакологическое оборудование

Экструдеры нашли свое применение и в фармакологии. Многие таблетки, а также батончики гематогена сделаны именно с помощью подобного оборудования. В фармакологии, где очень важна дозировка, зачастую используется не шнековые, а плунжерные установки. Они позволяют с высокой точностью добиться того, чтобы каждая таблетка полностью соответствовала требуемой массе, поскольку даже сотая доля миллиграмма действующего вещества может иметь огромное значение в лечении.

Экструдеры для производства полимерных изделий

Экструдер стал находкой для промышленных предприятий, которые занимаются производством полимерных изделий. Себестоимость использования этого оборудования максимально выгодная. Оно стоит дешевле, чем установки действующие по другим принципам, а кроме этого обеспечивают вполне качественный результат. Экструдеры нашли свое применение в самых разнообразных сферах переработки полимеров.

Существуют устройства, которые предназначены для переработки вторсырья. Отработанные ПЭТ бутылки, пластиковые пакеты, и прочие изделия из полимеров измельчаются с помощью промышленных шредеров, после чего крошка загружается в экструдер для вторсырья. Он расплавляет массу и формирует из нее мелкие гранулы. Попутно данное оборудование может использовать краску, чтобы выровнять цвет всей массы. Полученные таким способом гранулы продаются на различные предприятия, которые делают из них канализационные трубы, тротуарную плитку, ведра и прочие изделия.

Стоит отметить, что экструдеры, которые используются для обработки полимеров, имеют более сложную конструкцию в сравнении с теми, что работает с пищевыми продуктами для людей или животных. Данные установки имеют дополнительную систему нагрева, которая обеспечивает текучесть пластика, доводя его консистенцию практически до состояния сгущенки. После выхода материала из такого экструдера обеспечивается дополнительное охлаждение. Это позволяет вернуть полимеру его нормальную твердость, что предотвращает нарушение заданной формы полученным изделием.

Самыми технически сложными являются экструдеры, которые занимаются изготовлением профиля для пластиковых окон, а также труб. После того как материал проходит сквозь пресс-форму, он обладает еще повышенной мягкостью, поэтому с помощью системы валиков пропускается через ванну для охлаждения. Также на подобной экструдерной линии устанавливается ультразвуковое оборудование для тестирования стенок изделий. В случае выявления пустот или тонких участков осуществляется предупреждение оператора о необходимости наладки.

Особого внимания заслуживают экструдеры предназначенные для производства пленок. Они имеют плоскую щелевую пресс-форму, сквозь которую выдавливается полиэтилен или другой материал. После прохождения сквозь формовочный пресс, масса приобретает плоскую форму и сразу же охлаждается вентиляторами. Она накручивается на валик до его заполнения. После этого пленка обрезается, и процесс начинается заново.

Подобные экструдеры особенно требовательные к загружаемому сырью. Оно не должно иметь никаких примесей. Если оборудование, которое занимается производством труб, может стерпеть мелкий сор, то на пленке это будет заметно. В связи с этим используя такой экструдер необходимо позаботиться о соблюдение чистоты на производстве.

Метод экструзии полимеров (пластмасс)

Экструзия – это процесс плавления полимера (допустим, полиэтилена), в результате которой он превращается в изделие определенного размера. Общая технология экструзии всегда одна и та же, но некоторые факторы изменяются в зависимости от толщины, которую необходимо получить. После плавки полиэтилен сушится воздухом, и этот процесс тоже считается частью экструзии. Машина, которая выполняет данную работу, называется экструдером. В наше время это самый распространенный метод создания полиэтиленовой пленки.

Описание процесса экструзии

Такая сложная и комплексная процедура не может выполняться без соответствующего оборудования. Для получения качественной пленки необходим надежный и исправно работающий экструдер. Для начала в бункер машины загружаются полиэтиленовые гранулы, а затем включается функция нагрева. Вскоре гранулы плавятся и превращаются в вязкую прозрачную массу. Это и есть основа будущей пленки.

Вязкая масса проходит сквозь узкие отверстия, которые формируют кольцо. Результатом этой операции является «труба» из пленки. Как правило, в экструдерах предусмотрена функция изменения диаметра этой «трубы».

Затем пленка подвергается воздействию сжатого воздуха, после чего меняет форму. Она становится похожей на сильно вытянутый по вертикали баллон. Посреди валков элеватора находится небольшой зазор, в области которого соединяются края «баллона». Как результат, пленка оседает на дно экструдера и представляет собой сплюснутый рукав.

Нередко для изготовления полиэтиленовых пакетов применяются фальцеватели. В результате получается рукав с фальцовкой. Если изготовитель хочет сразу же нарезать пленку, то в конце сушки он применяет специальные ножи.

Особенности экструзии

Метод экструзии почти одинаков для большинства полимеров. Но температура плавки у каждого своя. Производители полиэтиленовой пленки пользуются расчетными номограммами, чтобы точно определять температуру, при которой плавятся те или иные термопласты. Чаще всего для плавки используются:

  • полиэтилен;
  • полипропилен;
  • поливинилхлорид;
  • полиформальдегид;
  • полистирол.

В отличие от большинства плавящихся веществ, температура плавления полимеров может колебаться в довольно широком диапазоне. Так, полиэтилен плавится при температуре от 100 до 125°С, а различные виды полипропилена могут требовать температуру от 80 до 170°С. Это обуславливается составом полимеров, а также условиями проведения экструзии.

Экструзия полимеров требует от изготовителя пленки высоких профессиональных знаний. К примеру, поликарбонат и полиметилметакрилат – это полимеры с высокой вязкостью, которые при неосторожном превышении температуры могут потерять свои ключевые свойства.

Как известно, изначально полиэтилен существует в виде порошка. Но для того, чтобы загрузить его в экструдер, нужно сначала добиться гранулированной формы. Для этого проводятся следующие операции:

  1. Литье или прессование (иногда применяются другие методы) для получения цельной массы полимера.
  2. Плавка с последующим пропусканием через круглые отверстия (диаметр – от 1,5 до 2,5 мм).
  3. Нарезка полученной толстой нити на небольшие гранулы.

Только после этого полиэтилен можно загружать в экструдер. Аналогичные операции нужно проделывать и с полипропиленом, а также с некоторыми другими полимерами. Практически любая линия экструзии может работать со всеми полимерами, но машины не в силах сами подстраиваться под изменение материала.

Плавление и охлаждение полиэтилена

Экструзия полиэтилена мало отличается от экструзии других полиолефинов, но нужно помнить одну важную вещь. При плавке полиэтилена выделяется намного больше тепла, чем, скажем, при плавке «родственного» полипропилена. Поэтому, если в прошлый раз экструдер работал с полипропиленом, а теперь необходимо экструдировать полиэтилен, то перед началом работы нужно снизить мощность нагревателей. Если пренебречь этим правилом, то пленка будет кристаллизоваться, станет хрупкой и непрозрачной.

Такой же результат – помутнение и хрупкость – ожидает и при неправильном охлаждении. Полиэтилен нужно охлаждать быстро и интенсивно. Если полимер будет слишком долго сохранять свое тепло, то начнется кристаллизация, которая в первую очередь скажется на прозрачности, а потом и на ударопрочности пленки.

Процесс экструзии с помощью кольцевого зазора (именно он был описан в начале статьи) имеет один существенный недостаток. Полученная пленка имеет неравномерную толщину и часто образовывает складки. Чтобы снизить риск этих побочных явлений, была сконструирована специальная головка экструдера. Ее внутренние и наружные стенки одновременно вращаются, минимизируя разброс толщины. Шанс появления складок тоже заметно падает.

Несмотря на этот недостаток, кольцевой зазор – лучший способ экструзии из ныне существующих. Именно он лежит в основе большинства полиэтиленовых изделий, которые используются на производствах, при строительстве и в быту.

Коронаторная обработка пленки после экструзии

Существуют специальные приспособления – коронаторы, которые применяются для обработки наружной поверхности пленочных рукавов. Они обдают пленку коронными разрядами тока. Данная процедура является необходимой, если изготовленная пленка будет подвергаться флексопечати.

Структура любого полимера – не волокнистая, поэтому краска будет легко держаться на на пленке и без дополнительной обработки (клейка, стимуляция и т.д.). Но использование коронаторов обязательно, ведь без них краска будет слезать с пленки в течение нескольких секунд. Краска, какой бы она ни была, превратится в каплю и будет спокойно передвигаться по полимерной пленке. Коронные разряды тока обеспечивают для пленки и краски валентную связь, и изначальная форма сохраняется на долгое время.

Дефекты пленки и их устранение

Такой сложный процесс, как экструзия пластмасс и полимеров, нечасто может обойтись без погрешностей. В большинстве случаев возникают недочеты, которые необходимо устранить. Поэтому мы рассмотрим основные погрешности при экструзии полиэтилена, а также опишем способы их устранения:

  1. Плохая прозрачность пленки. Эта проблема чаще всего решается повышением температуры плавки, а также повышением (или, наоборот, понижением) интенсивности охлаждения. Если ни один из способов не помогает, то остается только сменить марку полиэтилена.
  2. Посторонние вкрапления. Для решения этой проблемы нужно проверить, правильно ли хранится сырье (гранулированный полиэтилен), а также протестировать его качество.
  3. Полосы на пленке. Чаще всего они бывают продольными, реже – поперечными или хаотичными. Почти всегда это связано с плохим состоянием головки экструдера. Ее необходимо отполировать и очистить от нагара.
  4. Потускнение поверхности пленки. Чтобы избавиться от этого неприятного эффекта, нужно снизить температуру плавки, поднять давление во время экструзии, снизить скорость вращения шнека, отполировать головку экструдера.
  5. Шероховатость поверхности. Для избавления от этой проблемы можно отполировать головку и повысить температуру плавки, а также подсушить полиэтиленовые гранулы. Но это не всегда помогает, и тогда приходится заменять партию полимера.

Отдельного внимания заслуживает проблема разнотолщинности, которая уже была описана выше. Неравномерная толщина может иметь разный характер, и в зависимости от этого варьируется способ устранения проблемы:

  • если раздутый рукав полностью асимметричен, то нужно изменить размер зазора по периметру, а также проверить, равномерно ли прогревается головка экструдера;
  • если разнотолщинность проявляется только поперек рукава, то нужно также изменить размер зазора и отрегулировать температуру плавки;
  • если разнотолщинность проявляется только вдоль рукава, то нужно изменить скорость его отвода, отрегулировать скорость вращения шнека, параметры температуры и охлаждения.
Читайте также:  Цвета, благоприятные для спальни

Заключение

Итак, экструзия – это процесс, при котором полиэтилен из гранулированного материала превращается в прозрачную пленку. Данная процедура является комплексной и требует не только специального оборудования, но и профессиональных навыков человека, который будет работать с экструдером. Тем не менее, при создании изделий из полимеров без экструзии обойтись невозможно.

Экструзия. Общее представление об экструзии

Из истории экструзии

Экструзионные установки для переработки полимеров появились в 30-е годы XX века. Первый термопласт появился в Германии около 1935 года (инженер – Пуаль Трестер). До этого момента экструдеры служили для переработки каучука (шнековые или поршневые экструдеры с паровым подогревом и с малым соотношением длина/диаметр). После 1935 года появились экструдеры большей длины, оснащенные электронагревателями. Примерно в это же время были сформулированы основные принципы экструзии термопластов итальянцем Р. Коломбо, который совместно с К. Паскуэтти разрабатывал машину для смешения ацетата целлюлозы. С 1950-х годов внимание к устройству экструдеров и совершенствованию процесса экструзии усилилось: внедрялись новые технологии, проводились исследования. В последнее время было разработано новое поколение машин с более эффективным смешением и диспергированием полимеров.

Описание технологического процесса экструзии пленки

Экструзия – метод формования в экструдере для пленки изделий или полуфабрикатов неограниченной длины продавливанием расплава полимера через формующую головку с каналами необходимого профиля.

Представим схему оборудования для производства рукавной пленки:

Основными элементами экструдера являются следующие агрегаты:

  • бункер для загрузки сырья,
  • шнек и цилиндр для расплава сырья,
  • фильтр с сеткой для очистки материала,
  • формующая головка с воздушным кольцом для формирования материала,
  • устройство вытяжки материала,
  • устройство намотки готового материала,
  • блок управления экструзионной установкой.

Процесс внутри шнековой пары

Термопластичный полимер в процессе экструзии последовательно переходит сначала из твердого состояния (в виде гранул) в расплав, а затем вновь в твердое состояние (в виде пленки) после выхода из формующей оснастки.

Структуру твердого полимера составляют длинные молекулы (макромолекулы), свернутые в клубок или переплетенные между собой, формирующие высокоупорядоченные кристаллические или неупорядоченные аморфные образования. Отдельные фрагменты полимерных цепей находятся в непрерывном движении под действием тепловой энергии.

При нагреве, с возрастанием температуры, увеличивается подвижность молекул, разрушаются кристаллические образования, молекулы принимают клубкообразную или спиральную форму и начинают смещаться относительно друг друга. Полимер из твердого состояния переходит в расплав. У полимеров кристаллической структуры этот переход отвечает узкому интервалу температур, а у аморфных – широкому. В интервале между температурами плавления и разложения полимер находится в вязкотекучем состоянии. Именно в состоянии расплава материал экструдируется. Реальный интервал температур переработки несколько уже, чем интервал между температурой плавления и разложения, так как, с одной стороны, необходимо иметь достаточно подвижный расплав, а с другой стороны, необходимо избежать разложения полимера при экструзии.

Технологический процесс экструзии полимерного сырья состоит из последовательного проталкивания материала вращающимся шнеком по зонам:

  • питания (I),
  • пластикации и плавления (II),
  • дозирования расплава (III),
  • продвижения расплава в каналах формующей головки.

Схема одношнекового экструдера

Основные типы шнеков

Зоны технологического процесса экструзии

Деление шнека на зоны I-III осуществляется по технологическому признаку и указывает на то, какую операцию в основном выполняет данный участок шнека. Разделение шнека на зоны условно, поскольку в зависимости от природы перерабатываемого полимера, температурно-скоростного режима процесса и других факторов, начало и окончание определенных операций могут смещаться вдоль шнека, захватывая различные зоны или переходя из одного участка в другой.

Цилиндр также имеет определенные длины зон обогрева. Длина этих зон определяется расположением нагревателей на его поверхности и их температурой. Границы зон шнека I-III и зон обогрева цилиндра могут не совпадать. Для обеспечения успешного перемещения материала большое значение имеют условия продвижения твердого материала из загрузочного бункера и заполнение межвиткового пространства, находящегося под воронкой бункера.

Питание шнека зависит от формы частиц сырья и их плотности. Гранулы, полученные резкой заготовки на горячей решетке гранулятора, не имеют острых углов и ребер, что способствует их лучшей сыпучести. Гранулы, полученные холодной рубкой прутка-заготовки, имеют острые углы, плоское сечение среза, что способствует их сцеплению и, как следствие, худшей сыпучести. При длительной работе экструдера возможен перегрев цилиндра под воронкой бункера и самого бункера. В этом случае гранулы начнут слипаться и прекратится их подача на шнек. Для предотвращения перегрева этой части цилиндра в нем могут быть сделаны полости для циркуляции охлаждающей воды (Источник: инструкция пользователя. Лебедев П.Г., Лебедева Т.М., Митина Л.Н.)

Компания «Эксимпак-Оборудование» уже более 20 лет занимается поставкой экструзионной техники на отечественный рынок и рынки стран СНГ – от простых ПВД/ПНД однослойных моделей производства рукавной пленки шириной до 700 мм (например, модель YF-MHB-45) до многослойных A-B-C экструдеров производственной мощностью до 300 кг продукции в час. Покупатели могут не сомневаться в “тотальной” компетентности наших технологов относительно всего, что происходит внутри и снаружи шнека; равно как и надежность наших машин также не подлежит сомнению.

На долгих и прекрасных жизненных дорогах желаем вам всегда быть на коне и в отличной форме.

Станок FCA ( FR-1600A) для резки клейких материалов и втулкорезки FPT-500 и FPT-1300 для резки картонных шпуль в наличии на складе

Продам оборудование | Эксимпак-Оборудование

Продам оборудование | Николай

Верхние и нижние контрножи в наличии и под заказ

Система продольной резки и сварки ПЭ рукава для получения двух и более рукавов на одном экструдере

Для формирования композиций с нужным процентным содержанием основного сырья и вспомогательных компонентов

© 1997-2020 ООО «Эксимпак»

ИНН 7802382558, ОГРН 1077847045451

194233 С-Пб , ул. Курчатова 9

Тел./Факс +7 (812) 676-24-15

Благодарим вас за проявленный интерес! Наш менеджер свяжется с Вами в ближайшее время.

Схема экструзии

В химической промышленности метод экструзии применяется для нагрева, пластификации, гомогенизации и придания необходимой формы исходному сырью. Химический состав конечного продукта при этом идентичен химическому составу исходного сырья, что позволяет добиваться стабильного качества продукта прибегая при этом к минимальному количеству настроек экструдера, этим объясняется относительная простота машин, работающих в химической промышленности. Методом экструзии в химической промышленности изготавливают различные погонажные изделия, такие как трубы, листы, плёнки, оболочки кабелей, элементы оптических систем светильников — рассеиватели и т. д.

Пищевая промышленность

В пищевой промышленности метод экструзии применяется намного шире. В ходе процесса под действием значительных скоростей сдвига, высоких скоростей и давления, происходит переход механической энергии в тепловую, что приводит к различным по глубине изменениям в качественных показателях перерабатываемого сырья, например денатурация белка, клейстеризация и желатинизация крахмала, а также другие биохимические изменения.

Экструзионные продукты, получаемые на пищевых экструдерах

  • пельмени
  • кукурузная палочка
  • подушечки и трубочки с начинкой
  • хрустящие хлебцы и соломка
  • фигурные сухие завтраки
  • хлопья кукурузные и из других злаков
  • быстрозавариваемые каши
  • детское питание
  • фигурные чипсы
  • экструзионные сухарики
  • мелкий шарик из риса, кукурузы, гречи, пшеницы, для наполнения и обсыпки шоколадных изделий, мороженого и других кондитерских изделий
  • пищевые отруби
  • набухающая мука, панировка
  • продукты вторичной переработки хлеба
  • соевые продукты: соевый текстурат, концентрат (применяются в производстве колбасы, сосисок, котлет и т. д.), кусковые соевые продукты (фарш, гуляш, бифштекс, тушенка и т. д.)
  • продукты переработки отходов животноводства
  • модифицированный крахмал
  • реагент на основе крахмала применяемый в нефте- и газодобыче
  • строительные крахмалсодержащие смеси
  • основы для клеев

Комбикормовая промышленность

  • полножирная соя
  • зерновые экструдаты
  • корма для кошек, собак, домашних грызунов, крупного рогатого скота
  • корма для промысловых и аквариумных рыб

Производство твердого биотоплива

Одним из наиболее популярных методов получения топливных брикетов является использование специальных экструдеров. Процесс предствляет собой прессование шнеком отходов (шелухи подсолнечника, гречихи и т. п.) и мелко измельченных отходов древесины (опилок) под высоким давлением при нагревании от 250 до 350 С°. Получаемые топливные брикеты не включают в себя никаких связующих веществ, кроме одного натурального — лигнина, содержащегося в клетках растительных отходов. Температура, присутствующая при прессовании, способствует оплавлению поверхности брикетов, которая благодаря этому становится более прочной, что немаловажно для транспортировки брикета.

См. также

  • Шнек
  • Экструдированный корм
  • Экструзионный пенополистирол
  • Литьё пластмасс под давлением
  • Термопластавтомат

Ссылки

В этой статье не хватает ссылок на источники информации.

Wikimedia Foundation . 2010 .

Смотреть что такое “Экструзия (технологический процесс)” в других словарях:

Экструзия зерна и бобовых (технологический процесс) — Содержание 1 История 2 Описание процесса 3 … Википедия

Экструзия — (от англ. extrusion выталкивание, выдавливание): Экструзия (технологический процесс) метод и процесс получения изделий из полимерных материалов (резиновых смесей, пластмасс, крахмалсодержащих и белоксодержащих смесей) путем… … Википедия

Экструзия (значения) — Экструзия: Экструзия (технологический процесс) метод и процесс получения изделий из полимерных материалов (резиновых смесей, пластмасс, крахмалсодержащих и белоксодержащих смесей) путем продавливания расплава материала через формующее… … Википедия

Экструзия (химич. технология) — Экструзия: Экструзия (технологический процесс) метод и процесс получения изделий из полимерных материалов (резиновых смесей, пластмасс, крахмалсодержащих и белоксодержащих смесей) путем продавливания расплава материала через формующее отверстие в … Википедия

экструзия полимеров — Технологический процесс переработки полимерных материалов, осуществляемый в экструдерах. Заключается в уплотнении и плавлении материала при его движении по каналу рабочего органа, профилировании и выдавливании расплава. Экструзии обычно… … Справочник технического переводчика

Экструдер — Экструзия: Экструзия (технологический процесс) метод и процесс получения изделий из полимерных материалов (резиновых смесей, пластмасс, крахмалсодержащих и белоксодержащих смесей) путем продавливания расплава материала через формующее отверстие в … Википедия

Кукурузные хлопья — Миска с кукурузными хлопьями. Кукурузные хлопья пищевой продукт из зёрен кукурузы. Подобные продукты вырабатываются также из зёрен пшеницы … Википедия

Фильеры — Фильеры специальные, высокопрочные формы, через которые продавливают различные пластические вещества, так то: пластмассы, стекло и т. д. и т. п. Основное требование к фильерам это низкая химическая активность и… … Википедия

ОДМ 218.5.002-2008: Методические рекомендации по применению полимерных геосеток (георешеток) для усиления слоев дорожной одежды из зернистых материалов — Терминология ОДМ 218.5.002 2008: Методические рекомендации по применению полимерных геосеток (георешеток) для усиления слоев дорожной одежды из зернистых материалов: BR ширина рулона; Определения термина из разных документов: BR eLRmax (eTRmax)… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52918-2008: Огнеупоры. Термины и определения — Терминология ГОСТ Р 52918 2008: Огнеупоры. Термины и определения оригинал документа: 100 активирующая добавка огнеупора: Добавка огнеупора, способствующая повышению степени и скорости протекания физико химических процессов при его изготовлении.… … Словарь-справочник терминов нормативно-технической документации

Ссылка на основную публикацию